International Journal of Advanced Engineering Application

ISSN: 3048-6807

Technological Machines Operation by Identification Method

Author(s):Gupta Preety�, Gourav Mallick�,Aman Gupta�

Affiliation: 1,2,3Department of EC Engineering 1,2,3Carmel College Of Engineering and Technology Alappuzha

Page No: 19-23

Volume issue & Publishing Year: Volume 1 Issue 6, OCT-2024

Journal: International Journal of Advanced Engineering Application (IJAEA)

ISSN NO: 3048-6807

DOI:

Download PDF

Abstract:
To effectively organize agricultural enterprises, management tools are essential for optimizing the interaction of production components. The key concern is improving the technological process, especially the harvesting and post harvesting stages. This study proposes a mathematical model for optimizing machine parameters, focusing on reduced
costs and minimizing loss volumes during post harvesting. By applying regression models, the study predicts the performance of pre-cleaning machines and identifies operational modes that meet quality standards. The novelty of the research lies in optimizing combine harvester functions to ensure technical and economic efficiency.

Keywords:

Reference:

  • 1. Affholder, F., Tittonell, P., Corbeels, M., Roux, S., Motisi, N., Tixier, P., & Wery, J. (2012). AD HOC modeling in agronomy: What have
  • we learned in the last 15 years?. Agronomy Journal, 104(3), pp. 735�748.
  • 2. Aytasova, A., Selezneva, Z., Belinskaia, I., & Evdokimov, K. (2019). Development of the process map �research and development� for
  • agricultural organizations. In IOP Conference Series: Materials Science and Engineering (Vol. 666, No. 1, p. 012072). IOP Publishing.
  • 3. Bendat, D., & Pearsol, A. (1983). Applications of correlation and spectral analysis. M.: Mir, 312 p.
  • 4. Bikel, P., & Doxam, K. (1983). Mathematical statistics. Issue 2. M.: Finance and statistics, 254 p.
  • 5. Eickhoff, P. (1975). Fundamentals of identification of control systems. M.: Mir, 683 p.
  • 6. Eickhoff, P. (1983). Modern methods of identification of systems. M.: Mir, 400 p.
  • 7. Feller, V. (1984). Introduction to probability theory and its applications. Issue 2, M.: Mir, 738 p.
  • 8. Garc�a-Lara, S., & Sergio O. Othon. (2010). Cereal grains: properties, processing and nutritional attributes. Handbook on rice cultivation
  • and processing (2007)/by NPCS Board of Consultants and Engineers. CRC Press, p. 752.
  • 9. Hasanuzzaman, M. (Ed.). (2019). Agronomic crops. Volume 2: Management, Springer; 1st ed., 671 p.
  • 10. Hemis M., Watson, D. G., & Raghavan, V. G. (2019). Modeling the drying of wheat seeds in a fluidized bed using a spatially resolved
  • model. Applied Engineering in Agriculture, 35(4), pp. 551�559.
  • 11. Inskyi, R. K., Kovalishyn, S., & Sirotenko, O. D. (2001). Crop modeling: Advances and problems. Agronomy Journal, 93(3), pp. 650�653.
  • 12. Kerimov, M. A., & Enikeev, V. G. (1989). Reliability management of technological processes of grain harvesting complexes, fundamental
  • research at technical universities (materials of the scientific and technical conference of St. Petersburg State Technical University June 25
  • ... 26, 1998), 257 p.
  • 13. Lazor, J. (2013). The organic grain grower: Small-scale, holistic grain production for the home and market producer; foreword by Eliot
  • Coleman. Chelsea Green Publishing, 448 p.
  • 14. Liu, K., & Rosentrater, K. A. (2012). Distillers grains: Production, properties, and utilization. AOCS Publishing, 564 p.
  • 15. Mei�ner, W. (2015). Cleaning, grain damping, -cooling and �drying, aspiration, grinding. Wolfgang Mei�ner. Transl. by Josef Teich.
  • Sch�fer, 192 p.
  • 16. Mir, S. A., Manickavasagan, A., & Shah, M. A. (Eds.). (2019). Whole grains: Processing, product development, and nutritional aspects.
  • CRC Press; 1st ed, 316 p.
  • 17. Kerimov et al. (2022). Technological Machines Operation by Identification Method. Vol. 7, No. 3, 2022.
  • 18. Parfenova, V. E., Bulgakova, G. G., Amagaeva, Y. G., Evdokimov, K. V., & Samorukov, V. I. (2020). Forecasting models of agricultural
  • process based on fuzzy time series. In IOP Conference Series: Materials Science and Engineering (Vol. 986, No. 1, p. 012013). IOP
  • Publishing.
  • 19. Parfenova, V. E., Bulgakova, G. G., Amagaeva, Y. V., & Evdokimov, K. V. (2019). Fuzzy modelling for tasks of management of the
  • agricultural-industrial complex. In IOP Conference Series: Materials Science and Engineering (Vol. 666, No. 1, p. 012067). IOP Publishing.
  • 20. Price, A., & Kelton, J. (Eds.). (2013). Herbicides: Advances in Research. BoD�Books on Demand. IntechOpen, 322 p.
  • 21. Prokhorenko, V. A., & Smirnov, A. N. (1976). Forecasting the quality of systems, Minsk, 200 p.
  • 22. Souza, B., Vazquez, L. L., & Marucci, R. C. (Eds.) (2019). Natural enemies of insect pests in neotropical agroecosystems: biological control
  • and functional biodiversity. Springer; 1st ed., 857 p.
  • 23. Tsypkin, Ya. Z. (1995). Information theory of identification, M.: Nauka, 336 p.
  • 24. Unger, P. W., & Baumhardt, R. L. (1999). Factors related to dryland grain sorghum yield increases: 1939 through 1997. Agronomy Journal,
  • 91(5), pp. 870�875.
  • 25. Vanangamudi, K., Kavitha, S., & Raja, K. (2017). Objective seed science and technology. Competition Tutor, 514 p.
  • 26. Wentzel, A. D. (1975). The course of the theory of random processes, M.: Nauka, 320 p.
  • 27. Yanushevsky, R. T. (1978). Object management with delay, M.: Nauka, 416 p